

Supplementary Slidedeck

Initial conceptual life cycle calculation of a steel vessel compared with an aluminum vessel in a GHG perspective

Ærøfærgerne | Project: 123218102023-3 November 2023

Project Overview Vessel specifications & description

Life Cycle Inventory Creating the vessel models

Impact Assessment Conceptual life cycle GHG calculation key numbers

Outline & key findings design

Overview

Vessel comparison: Reduction potential related to aluminum

Project Overview

Vessel specifications & description

Name: DE Ferry: Ærøkøbing-Svendborg **Type:** Aeroe Steel DE 70 Construction Weight: 1 535 000 kg Weight: 850 000 kg Lifespan: 25 years

Function: To sail between Ærøkøbing-Svendborg both ways, 6 times a day, for 360 days a year, in 25 years *Life cycle stages: Manufacturing, Operation, Maintenance, Recycling*

- **Name:** DE Ferry: Ærøkøbing-Svendborg
- **Type:** Aeroe Aluminum DE 70 Construction
- Lifespan: 25 years

Life Cycle Inventory

Creating the vessel models

Steel DE Ferry

Manufacturing

- Steel: Primary data
- Batteries: Lithium-ion technology
- Newbuilding processes: *Based on standard vessel data*

Operation

• Electricity: *DK grid mix w. no change over time*

Maintenance

• Battery change: Assumed 10 year lifespan

Recycling

- Recyclability: approx. 80% (70%-90% range)
- Energy: approx. 1 kWh/kg (0.5-1.5 kWh/kg)

Manufacturing

- Aluminum: *Primary data*

Operation

Maintenance

Recycling

- Recyclability: *approx. 98*%

• Batteries: *Lithium-ion technology* • Newbuilding processes: *Based on standard vessel data*

• Electricity: *DK grid mix w. no change over time*

• Battery change: Assumed 10 year lifespan

• Energy: *approx. 0.5 kWh/kg*

Impact Assessment

Conceptual life cycle GHG calculation key numbers

Steel DE Ferry

Total Carbon Footprint: *52 317 tonnes CO2e*

Most Impacting Stage : 49 802 tonnes CO2e (Operation)

Most Impacting Parameter: *Electricity (DK)*

CO2e Reduction (%): 3.1 % (Recycling)

CO2e Reduction (t): *1 684 tonnes CO2e (Recycling)*

Aluminum DE Ferry

- **Total Carbon Footprint:** 34 423 tonnes CO2e
- **Most Impacting Stage :** 32 908 tonnes CO2e (Operation)
- **Most Impacting Parameter:** *Electricity (DK)*
- **CO2e Reduction (%):** 4.6 % (Recycling)
- **CO2e Reduction (t):** *1 671 tonnes CO2e (Recycling)*

Outline & key findings Vessel comparison: Reduction potential related to aluminum design

Comparing the aluminum vessel design to the steel vessel design

Total carbon footprint reduced:

Manufacturing carbon footprint reduced:

Operation carbon footprint reduced:

16 894 tonnes CO2e

1 034 *tonnes CO2e*

17 893 tonnes CO2e

Maintenance outline:

Only considers battery replacement

Recycling outline

- Percentage reduced: approx. 34 %
- Percentage reduced: approx. 29 %
- Percentage reduced: approx. 33 %
- Potential increased recycling potential for aluminum

Supplementary Slidedeck

Initial conceptual life cycle calculation of a steel vessel compared with an aluminum vessel in a GHG perspective

Ærøfærgerne | Project: 123218102023-3 November 2023

